Testwiki:VisualEditor testing/TestMath

From testwiki
Jump to navigation Jump to search

Let f : DR be a function defined on a subset, D, of the real line, R. Let I = [a, b] be a closed interval contained in D, and let

P={[x0,x1),[x1,x2),,[xn1,xn]},
Default E=Σmc2
Default E=Σmc2 E=Σmc2

be a partition of I, where

a=x0<x1<x2<<xn=ba2233

The Riemann sum of f over I with partition P is defined as

S=i=1nf(xi*)(xixi1),xi1xi*xi.

The choice of xi* in the interval [xi1,xi] is arbitrary.

Example: Specific choices of xi* give us different types of Riemann sums:

  • If xi*=xi1 for all i, then S is called a left Riemann sum.
  • If xi*=xi for all i, then S is called a right Riemann sum.
  • If xi*=12(xi+xi1) for all i, then S is called a middle Riemann sum.
  • The average of the left and right Riemann sum is the trapezoidal sum.
  • If it is given that
wow oweo
S=i=1nvi(xixi1),
where vi is the supremum of f over [xi1,xi], then S is defined to be an upper Riemann sum.
  • Similarly, if vi is the infimum of f over [xi1,xi], then S is a lower Riemann sum.

The Cartesian coordinates x and y can be converted to polar coordinates r and φ with r ≥ 0 and φ in the interval (−π, π] by:[1]

r=x2+y2 (as in the Pythagorean theorem or the Euclidean norm), and
φ=atan2(y,x),

where atan2 is a common variation on the arctangent function defined as

atan2(y,x)={arctan(yx)if x>0arctan(yx)+πif x<0 and y0arctan(yx)πif x<0 and y<0π2if x=0 and y>0π2if x=0 and y<0undefinedif x=0 and y=0

References